Изучение спектрометрических особенностей лесных семян для улучшения посевных качеств: ретроспективный кластерный анализ направлений научного ландшафта

Т.П. Новикова, А.И. Новиков, Е.П. Петрищев

Скачать

№ 4 (52) ч. 1

Естественные науки и лес

Сведения об авторах: 

Новикова Татьяна Петровна – кандидат технических наук, доцент, доцент кафедры компьютерных технологий и микроэлектронной инженерии, ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г.Ф. Морозова», ул. Тимирязева, д. 8, г. Воронеж, Российская Федерация, 394087; http://orcid.org/0000-0003-1279-3960, e-mail: novikova_tp.vglta@mail.ru.
Новиков Артур Игоревич – доктор технических наук, доцент, профессор кафедры древесиноведения, ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г.Ф. Морозова», ул. Тимирязева, д. 8, г. Воронеж, Российская Федерация, 394087, ORCID: http://orcid.org/0000-0003-1230-0433, e-mail: arthur.novikov@vglta.vrn.ru.
Петрищев Евгений Петрович – аспирант, ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г.Ф. Морозова», ул. Тимирязева, д. 8, г. Воронеж, Российская Федерация, 394087, ORCID: https://orcid.org/0000-0002-1395-3631, e-mail: petrishchev.vgltu@mail.ru.

Аннотация: 

Спектральные данные лесных семян в видимом и инфракрасном диапазонах длин электромагнитного излучения достаточно эффективно дифференцируют происхождение, жизнеспособность, виды семян, их зараженность вредителями и болезнями, способность впитывать и терять воду. Поиск одновременно инструментально простого, быстрого и эффективного для прогнозирования всхожести способа тестирования семян необ-ходим для повышения энергоэффективности лесных питомников при производстве посадочного материала. Ретроспективная систематизация источников (N = 55, 1998-2023 годы, терм [Scholar Query = seeds* AND (spectr* OR optic*) (properties OR features) AND analysis] в кластеры проведена на основании восьми критериев эффективности, представленных ранговыми переменными. Уровень сходства и различия между кластерами определен методом наиболее отдаленных соседей с группировкой данных по квадрату евклидова расстояния. Наиболее отдаленный от других критерий – уровень инвазивности тестирования (квадрат Евклидова расстояния – 25, p

Ключевые слова: 

лесные семена, тестирование семян, впитывание воды семенами, всхожесть семян, качество семян, искус-ственное лесовосстановление, планшетный сканер, RGB-спектральные данные, сегментирование изображения

Для цитирования: 

Новикова Т. П. Изучение спектрометрических особенностей лесных семян для улучшения посевных качеств: кластерный анализ направлений научного ландшафта / Т. П. Новикова, А. И. Новиков, Е. П. Петрищев // Лесотехнический журнал. – 2023. – Т. 13. – № 4 (52). – Ч. 1. – С. 23–39. – Библиогр.: с. 32–36 (64 назв.). – DOI: https://doi.org/10.34220/issn.2222-7962/2023.4/1.

Литература: 

1. McDonald, M.B. Computer Imaging to Improve Seed Quality Determinations / M.B. McDonald, K. Fujimura, Y. Sako et al. // Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology. – 2015. – P. 15-28. – Mode of access: http://doi.wiley.com/10.2134/asaspecpub66.c2.
2. Novikov, A.I. The effect of sorting Scots pine seeds by color and size on their soil germination in containers // Coniferous boreal zones. – 2019. – Vol. 37. – № 5. – P. 313-319. – URL: https://www.elibrary.ru/item.asp?id=42337219.
3. New optoelectronic systems for express analysis of seeds in forestry production / S.V. Sokolov et al. // Forestry Engineering Journal. – 2019. – Vol. 9, № 2(34). – P. 5-13. – DOI 10.34220/issn.2222-7962/2019.2/1. – https://elibrary.ru/CNXAWZ.
4. Novikov, A.I. Express analysis of forest seeds by biophysical methods – Voronezh : Voronezh State University of Forestry and Tecnologies named after G.F. Morozov, 2018. – 128 p. – URL: https://elibrary.ru/yzuzgx.
5. The effect of the individual seed mass of Negorelskaya variety Scots pine (Pinus sylvestris L.) on 30-day germination in 40-cell SideSlit growing containers / S. Rabko et al. // Forestry Engineering Journal. – 2023. – Vol. 13. – № 2. – P. 59-86. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.2/4.
6. The study of spectrometric parameters of seeds as the basis for the intensification of the process of reforestation of Scots pine cultivars of the “Negorelskaya” variety : grant RCF 23-26-00228. – М. : RCF, 2023. – URL: https://elibrary.ru/jtyxux.
7. The influence of the climatic index of degree days on the vitality of 3-year-old seedlings of scots pine from seeds sorted by spectrometric properties / V.I. Malysheva et al. // Лесотехнический журнал. – 2022. – Vol. 12. – № 1. – P. 110-118. – DOI: https://doi.org/10.34220/issn.2222-7962/2022.1/9.
8. Rebko, S.V. The variety of common pine “Negorelskaya” in Belarus: the first, the only, unique / S.V. Rebko, L.F. Poplavskaya, V.N. Balanchuk // Forest resources - Belarusian polesie : proceedings of the international conference of young scientists, Gomel, September 24-27, 2018. – Gomel : Beldruk Printing House LLC, 2018. – P. 66-68. – URL: https://elibrary.ru/suuwhw.
9. Sviridov, L.T. The historical aspect of the problem of sorting forest seeds // Forest in the life of the Eastern Slavs: from Kievan Rus to the present day. – Gomel : FI NAS B, 2003. – P. 186-190. URL: https://elibrary.ru/tskkll.
10. Sviridov, L.T. Promising technical means for processing coniferous seeds / L.T. Sviridov, N.D. Gomzyakov // Forestry. – 2007. – Vol. 2. – P. 44-46. URL: https://elibrary.ru/hzdxmt.
11. Andivia, E. How can my research paper be useful for future meta-analyses on forest restoration plantations? / E. Andivia, P. Villar-Salvador, J.A. Oliet et al. // New Forests. – 2019. – Vol. 50. – № 2. – P. 255-266. – DOI: https://doi.org/10.1007/s11056-018-9631-y.
12. Bernardes, R.C. Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology / R.C. Bernardes, A. De Medeiros, L. da Silva et al. // Agriculture. – 2022. – Vol. 12. – № 11. – P. 1801. – DOI: https://doi.org/10.3390/agriculture12111801.
13. Boelt, B. Multispectral imaging – a new tool in seed quality assessment? / B. Boelt, S. Shrestha, Z. Salimi et al. // Seed Science Research. – 2018. – Vol. 28. – № 3. – P. 222-228. – DOI: https://doi.org/10.1017/S0960258518000235.
14. Castro, É.B. de L. Classification of Phaseolus lunatus L. using image analysis and machine learning models / É.B. de L. Castro, R. de S. Melo, E.M. da Costa et al. // Revista Caatinga. – 2022. – Vol. 35. – № 4. – P. 772-782. – DOI: https://doi.org/10.1590/1983-21252022v35n404rc.
15. Cuzzuol, G.R.F. Relationship between N, P, and K and the quality and stem structural characteristics of Caesalpinia echinata Lam. plants / G.R.F. Cuzzuol, C.R.D. Milanez, J.M.L. Gomes et al. // Trees. – 2013. – Vol. 27. – № 5. – P. 1477-1484. – DOI: https://doi.org/10.1007/s00468-013-0894-9.
16. Dell’Aquila, A. Digital Imaging Information Technology Applied to Seed Germination Testing: A Review / A. Dell’Aquila // Sustainable Agriculture / E. Lichtfouse et al. eds. . – Dordrecht : Springer Netherlands, 2009. – P. 377-388.
17. Dornyak, O. Immersion Freezing of a Scots Pine Single Seed in a Water-Saturated Dispersion Medium: Mathematical Modelling / O. Dornyak, A. Novikov // Inventions. – 2020. – Vol. 5. – № 4. – P. 51. – DOI: https://doi.org/10.3390/inventions5040051.
18. Downie, B. Upgrading germinability and vigour of jack pine, lodgepole pine, and white spruce by the IDS technique / B. Downie, B.S.P. Wang // Canadian Journal of Forest Research. – 1992. – Vol. 22. – № 8. – P. 1124-1131. – DOI: https://doi.org/10.1139/x92-149.
19. Drapalyuk, M. 140th anniversary of the birthday of Alexander Vladimirovich Tyurin / M. Drapalyuk, A. Sivolapov, V. Bugakov, M. Razinkov // Forestry Engineering Journal. – 2023. – Vol. 12. – № 4. – P. 5-13. – DOI: https://doi.org/10.34220/issn.2222-7962/2022.4/1.
20. ElMasry, G. Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring—An Overview / G. ElMasry, N. Mandour, S. Al-Rejaie et al. // Sensors. – 2019. – Vol. 19. – № 5. – P. 1090. – DOI: https://doi.org/10.3390/s19051090.
21. Esteve Agelet, L. Limitations and current applications of Near Infrared Spectroscopy for single seed analysis / L. Esteve Agelet, C.R. Hurburgh // Talanta. – 2014. – Vol. 121. – P. 288-299. – DOI: https://doi.org/10.1016/j.talanta.2013.12.038.
22. Gallardo-Salazar, J.L. Seedling quality and survival of a true fir [Abies religiosa (Kunth) Schltdl. et Cham.] forest plantation from two provenances in central Mexico / J.L. Gallardo-Salazar, D.A. Rodríguez-Trejo, S. Castro-Zavala // Agrociencia. – 2019. – Vol. 53. – № 4. – P. 631-643.
23. Grossnickle, S. Seedling Quality: History, Application, and Plant Attributes / S. Grossnickle, J. MacDonald // Forests. – 2018. – Vol. 9. – № 5. – P. 283. – DOI: https://doi.org/10.3390/f9050283.
24. Himanen, K. Seed quality attributes in seedling production of Norway spruce (Picea abies (L.) Karst.) / K. Himanen // Dissertationes Forestales. – 2018. – Vol. 261. – P. 74. – DOI: https://doi.org/10.14214/df.261.
25. Hornberg, A. Handbook of machine vision / A. Hornberg. – Ladenburg : John Wiley & Sons, 2007. – 798 p.
26. Hu, J. Rapid evaluation of the quality of chestnuts using near-infrared reflectance spectroscopy / J. Hu, X. Ma, L. Liu et al. // Food Chemistry. – 2017. – Vol. 231. – P. 141-147. – DOI: https://doi.org/10.1016/j.foodchem.2017.03.127.
27. Ivetić, V. The role of forest reproductive material quality in forest restoration / V. Ivetić, A.I. Novikov // Forestry Engineering Journal. – 2019. – Vol. 9. – № 2. – P. 56-65. – DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/7.
28. Kang, K.-S. Seed orchards (Establishment, Management and Genetics) / K.-S. Kang, N. Bilir. – Ankara, Turkey : OGEM-VAK Press, 2021. – 1-189 p.
29. Keefe, R.F. Marked, biased, filter (MBF): use of digital X-radiography and mark-recapture to partition seed lots based on sampled individual seed quality attributes / R.F. Keefe, A.S. Davis // New Forests. – 2012. – Vol. 43. – № 2. – P. 169-184. – DOI: https://doi.org/10.1007/s11056-011-9271-y.
30. Khouja, M. Lipid Profile Quantification and Species Discrimination of Pine Seeds through NIR Spectroscopy: A Feasibility Study / M. Khouja, R.N.M.J. Páscoa, D. Melo et al. // Foods. – 2022. – Vol. 11. – № 23. – P. 3939. – DOI: https://doi.org/10.3390/foods11233939.
31. Lamichhane, J.R. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework / J.R. Lamichhane, P. Debaeke, C. Steinberg et al. // Plant and Soil. – 2018. – Vol. 432. – № 1-2. – DOI: https://doi.org/10.1007/s11104-018-3780-9.
32. Lestander, T.A. NIR spectral information used to predict water content of pine seeds from multivariate calibration / T.A. Lestander, P. Geladi // Canadian Journal of Forest Research. – 2005. – Vol. 35. – № 5. – P. 1139-1148. – DOI: https://doi.org/10.1139/x05-046.
33. Lestander, T.A. NIR spectroscopic measurement of moisture content in Scots pine seeds / T.A. Lestander, P. Geladi // The Analyst. – 2003. – Vol. 128. – № 4. – P. 389. – DOI: https://doi.org/10.1039/b300234a.
34. Li, H. Near-Infrared Spectroscopy Coupled Chemometric Algorithms for Rapid Origin Identification and Lipid Content Detection of Pinus Koraiensis Seeds / H. Li, D. Jiang, J. Cao, D. Zhang // Sensors. – 2020. – Vol. 20. – № 17. – P. 4905. – DOI: https://doi.org/10.3390/s20174905.
35. Mataruga, M. Monitoring and control of forest seedling quality in Europe / M. Mataruga, B. Cvjetković, B. De Cuyper et al. // Forest Ecology and Management. – 2023. – Vol. 546. – № August. – P. 121308. – DOI: https://doi.org/10.1016/j.foreco.2023.121308.
36. Mohan, M. Uav‐supported forest regeneration: Current trends, challenges and implications / M. Mohan, G. Richardson, G. Gopan et al. // Remote Sensing. – 2021. – Vol. 13. – № 13. – DOI: https://doi.org/10.3390/rs13132596.
37. Frontier technique of creating protective forests stands around nurseries on inefficient sites: technological foundations / V. Ivetic et al. // Forestry Engineering Journal. – 2022. – Vol. 12. – № 2. – P. 115-125. – DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/10.
38. Detection of Scots pine single seed in optoelectronic system of mobile grader: mathematical modeling / M. Tigabu et al. // Forests. – 2021. – Vol. 12. – № 2. – P. 240. – DOI: https://doi.org/10.3390/f12020240.
39. Novikov, A.I. About new means of forest seeds sorting in coniferous breeds [in Russian - O novykh sposobakh sortirovaniya lesnykh semyan khvoynykh porod] // Forests of Eurasia in the third millennium: Proceedings of the international conference of young scientists. – Moscow, Russian Federation, 2001. – P. 90-91. https://elibrary.ru/rxiqqj.
40. Novikov, A.I. Improvement of technology for obtaining high-quality forest seed material : advanced Doctoral Thesis. – Voronezh State University of Forestry and Technologies, 2021. – 341 p. https://elibrary.ru/jxtbsb.
41. Novikov, A.I. Some technological features of the sorting devices and development trends // Forest and youth VSAFE - 2000: proceedings of the anniversary scientific conference of young scientists dedicated to 70-th anniversary of VSAFE. – Voronezh, Russian Federation, 2000. – P. 53-60. https://elibrary.ru/snisit.
42. Novikov, A.I. Visible wave spectrometric features of Scots pine seeds: the basis for designing a rapid analyzer / A.I. Novikov // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 226. – № 1. – P. 012064. – DOI: https://doi.org/10.1088/1755-1315/226/1/012064.
43. Mechanization of coniferous seeds grading in Russia: a selected literature analysis / B.T. Ersson et al. // IOP Conference Series: Earth and Environmental Science. – 2020. – Vol. 595. – P. 012060. – DOI: https://doi.org/10.1088/1755-1315/595/1/012060.
44. The effect of seed coat color grading on height of one-year-old container-grown Scots pine seedlings planted on post-fire site / V. Ivetić et al. // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 226. – P. 012043. – DOI: https://doi.org/10.1088/1755-1315/226/1/012043.
45. Scots pine seedlings growth dynamics data reveals properties for the future proof of seed coat color grading conjecture / V. Ivetić et al. // Data. – 2019. – Vol. 4. – № 3. – P. 106. – DOI: https://doi.org/10.3390/data4030106.
46. Dickson Quality Index: relation to technological impact on forest seeds / S. Rabko et al. // Forestry Engineering Journal. – 2023. – Vol. 13. – № 1. – P. 23-36. – DOI: https://doi.org/10.34220/issn.2222-7962/2023.1/2.
47. Performance of Scots pine seedlings from seeds graded by colour / M.V. Drapalyuk et al. // Forests. – 2019. – Vol. 10. – № 12. – P. 1064. – DOI: https://doi.org/10.3390/f10121064.
48. Aerial seeding of forests in Russia: A selected literature analysis / B.T. Ersson et al. // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 226. – № 1. – P. 012051. – DOI: https://doi.org/10.1088/1755-1315/226/1/012051.
49. Novikova, T.P. Economic evaluation of mathematical methods application in the management systems of electronic component base development for forest machines / T.P. Novikova, A.I. Novikov // IOP Conference Series: Earth and Environmental Science. – 2019. – Vol. 392. – № 1. – P. 012035. – DOI: https://doi.org/10.1088/1755-1315/392/1/012035.
50. Reforestation pipeline: case for quality management of NIR-region grading of Scots pine seeds and FLR-algorithm for information processing / E.P. Petrishchev et al. // Silva Balcanica. – 2023. – Vol. 24. – № 3. – DOI: https://doi.org/10.3897/silvabalcanica.24.e114699.
51. The Root Collar Diameter Growth Reveals a Strong Relationship with the Height Growth of Juvenile Scots Pine Trees from Seeds Differentiated by Spectrometric Feature / C.B. Mastrangelo et al. // Forests. – 2023. – Vol. 14. – № 6. – P. 1164. – DOI: https://doi.org/10.3390/f14061164.
52. Ozbey, A. Block effect on genetic parameters in a 23-year-old progeny trial of Pinus brutia / A. Ozbey, N. Bilir // Forestry Engineering Journal. – 2022. – Vol. 12. – № 2. – P. 5-13. – DOI: https://doi.org/10.34220/issn.2222-7962/2022.2/1.
53. Royer-Tardif, S. Revisiting the Functional Zoning Concept under Climate Change to Expand the Portfolio of Adaptation Options / S. Royer-Tardif, J. Bauhus, F. Doyon et al. // Forests. – 2021. – Vol. 12. – № 3. – P. 273. – DOI: https://doi.org/10.3390/f12030273.
54. Saha, R. Integrated assessment of adventitious rhizogenesis in Eucalyptus: root quality index and rooting dynamics / R. Saha, H.S. Ginwal, G. Chandra, S. Barthwal // Journal of Forestry Research. – 2020. – Vol. 31. – № 6. – P. 2145-2161. – DOI: https://doi.org/10.1007/s11676-019-01040-6.
55. Santos, C.C. Morphophysiology and quality of Alibertia edulis seedlings grown under light contrast and organic residue / C.C. Santos, A. Goelzer, O.B. da Silva et al. // Revista Brasileira de Engenharia Agrícola e Ambiental. – 2023. – Vol. 27. – № 5. – P. 375-382. – DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n5p375-382.
56. Sokolov, S. V. How to increase the analog-to-digital converter speed in optoelectronic systems of the seed quality rapid analyzer / S. V. Sokolov, V. V. Kamenskij, V. Ivetić // Inventions. – 2019. – Vol. 4. – № 4. – P. 61. – DOI: https://doi.org/10.3390/inventions4040061.
57. Sokolov, S.V. New optoelectronic systems for express analysis of seeds in forestry production / S.V. Sokolov et al. // Forestry Engineering Journal. – 2019. – Vol. 9. – № 2. – P. 5-13. – DOI: https://doi.org/10.34220/issn.2222-7962/2019.2/1.
58. Tigabu, M. Characterization of forest tree seed quality with near infrared spectroscopy and multivariate analysis: PhD Thesis / M. Tigabu. – 2003. – 56 pp. + Papers I-VII p.
59. Tigabu, M. Multivariate discriminant analysis of single seed near infrared spectra for sorting dead-filled and viable seeds of three pine species: does one model fit all species? / M. Tigabu, A. Daneshvar, R. Jingjing et al. // Forests. – 2019. – Vol. 10. – № 6. – P. article id 469. – DOI: https://doi.org/10.3390/f10060469.
60. Vale, A.M.P.G. A new automatic approach to seed image analysis: From acquisition to segmentation / A.M.P.G. Vale, M. Ucchesu, C. Di Ruberto et al. – 2020. – DOI: https://doi.org/10.48550/arXiv.2012.06414.
61. Wang, D. Single Wheat Kernel Color Classification by Using Near‐Infrared Reflectance Spectra / D. Wang, F.E. Dowell, R.E. Lacey // Cereal Chemistry. – 1999. – Vol. 76. – № 1. – P. 30-33. – DOI: https://doi.org/10.1094/CCHEM.1999.76.1.30.
62. Wang, D. Single wheat kernel size effects on near-infrared reflectance spectra and color classification / D. Wang, F.E. Dowell, R.E. Lacey // Cereal Chemistry. – 1999. – Vol. 76. – № 1. – P. 34-37. – DOI: https://doi.org/10.1094/CCHEM.1999.76.1.34.
63. Yazici, N. Aspectual Fertility Variation and Its Effect on Gene Diversity of Seeds in Natural Stands of Taurus Cedar (Cedrus libani A. Rich.) / N. Yazici, N. Bilir // International Journal of Genomics. – 2017. – Vol. 2017. – P. 1-5. – DOI: https://doi.org/10.1155/2017/2960624.
64. Zhao, F. Relationships between understory vegetation coverage and environmental factors in Pinus massoniana plantations from aerial seeding / F. Zhao, X.Z. Ouyang // Chinese Journal of Applied Ecology. – 2015. – Vol. 26. – № 4. – P. 1071-1076.